1M/CHE-100 (Th) Syllabus-2023

2024

(April)

FYUP: 1st Semester Examination

MAJOR COURSE

CHEMISTRY: CHE-100

Part-A (Introductory Chemistry-I)

(Theory)

Marks: 56

Time: 3 hours

The figures in the margin indicate full marks for the questions

UNIT-I

(Inorganic Chemistry—I)

(Marks: 18)

 (a) What is Heisenberg uncertainty principle? Calculate the uncertainty in velocity of an electron when the uncertainty of its position is 10⁻¹⁰ m.

$$(h = 6.6 \times 10^{-34} \text{ kg m}^2 \text{ s}^{-1} \text{ and}$$

 $m_e = 9.1 \times 10^{-31} \text{ kg})$ 3

24D/798

(Turn Over)

	(b)	Write down the Schrödinger wave equation in three-dimension and define all the terms involved. Write down the physical significances of ψ and ψ^2 .	(b)	Predict the shapes of the following molecules using VSEPR theory: (i) H_3O^+ (ii) BO_3^{3-}	2
	(c) (d)	Differentiate between electron gain enthalpy and electronegativity.	(c)	the hybridization states of	
		OR		(i) PC1 ₃	
2.	(a) (b)	For principal quantum number $n=3$, write all the permissible values of l and m , and identify all the orbitals. 3 What is meant by 'dual character of matter? Derive the de Broglie relation.	(d	(ii) PCl ₅ Draw the orbital structures for both. Explain why CO ₂ molecule shows zero dipole moment. OR	2
	(c)	Define the modern periodic law. Write down the atomic number and electronic configuration of Cl. 2	4. (a	What is lattice energy? Calculate the lattice energy of NaCl, when one mole of NaCl is prepared from 1 g atom of	
	(d)	Fluorine has a lower electron affinity than chlorine. Explain.		Na and 0.5 mole of Cl ₂ gas from the given data:	3
3.	(a)	Draw the molecular orbital energy level		Enthalpy of formation of NaCl(s) = 381.8 kJ/mole	
		bond orders for O_2 , O_2 and O_2^2 , and		Enthalpy of sublimation of Na = 108.5 kJ/mole	
		mention their magnetic behaviours. 3	11.57		3 r
24D/	798	(Complete 1)	24D/7	798 (Turn Ove	,1

(Continued)

Heat of dissociation of Cl₂ = 495 · 2 kJ/mole

Ionization energy of Na = 495.2 kJ/mole

Electron affinity of Cl = 348.3 kJ/mole

- (b) Mention the factors which affect the polarity of a molecule and hence its dipole moment.
- (c) Define 'polarizing power' and 'polarizability' of ions. Which ions will have higher polarizing power, K⁺ or Li⁺? Explain.
- (d) The hybridization state of Cl in ClF_3 is sp^3d as well as S in SF_4 , but their shapes are different. Explain.

UNIT-II

(Organic Chemistry-I)

(Marks: 19)

- of the following molecules and predict their hybridization and bond angle of each:
 - (i) CH4
 - (ii) R—C**=**N
 - (b) Give the IUPAC name of the following:

CH₃ CH₃ O CH₃ CH—CH—CH₂ C—H

- (c) Why is the boiling point of p-nitrophenol higher than that of o-nitrophenol, though they are isomers of each other?
- (d) Benzyl carbocation is more stable than ethyl carbocation. Explain.
- (e) How can an alkane be prepared using Corey-House synthesis? Give the chemical equation.

OR

6. (a) Draw the hyperconjugation structure of toluene.

2

2

1

2

2

11/2

(b) Arrange the following substituted carboxylic acids in order of decreasing acidity. Give suitable explanation:

2

2

2

11/2

(Continued)

- (c) What are the types of reaction intermediates formed by homolytic and heterolytic bond fissions? Give examples.
- (d) The species A, B and C are more stable than D, E and F respectively. Give reasons for your answer:

$$\begin{array}{ccc} \operatorname{CH_3CH} = \operatorname{CH}\overset{\oplus}{\operatorname{CH_2}} & \operatorname{CH_2} = \operatorname{CHCH_2}\overset{\oplus}{\operatorname{CH_2}} \\ \text{(A)} & \text{(D)} \end{array}$$

$$\begin{array}{ccc} \operatorname{CH_3CH} = \operatorname{CH}\overset{\ominus}{\operatorname{CH}_2} & \operatorname{CH_2} = \operatorname{CHCH_2}\overset{\ominus}{\operatorname{CH}_2} \\ \text{(B)} & \text{(E)} \end{array}$$

$$CH_3CH = CH\dot{C}H_2 \qquad CH_2 = CHCH_2 \dot{C}H_2$$
(C) (F)

(e) Write the mechanism for chlorination of methane.

7. (a) Complete the following reactions by writing the correct products: $1 \times 2 = 2$

(ii)
$$\sum_{i} O \xrightarrow{Zn/Hg \text{ and } HCl}$$
?

- (b) Give a brief account on the limitation of Bayer's strain theory.
- (c) Predict the products of the following reactions: $1 \times 2=2$

(i)
$$C_6H_5$$
— CH = CH_2 + HBr \longrightarrow ?

(ii)
$$H_2C=CH_2+O_3 \xrightarrow{CCl_4}$$
?

(d) Give the mechanism of the following reaction:

$$CH_2=CH_2+Br_2$$
 CCl_4
 CH_2-CH_2
 Br
 CH_2-CH_2
 Br

Also explain why this addition leads to the formation of *trans*-addition product as major product. 2+1=3

(e) Write the mechanism for the reaction of ethyne with HOCl.

24D/798

(Turn Over)

OR

- 8. (a) Give the Kolbe's synthesis of ethane with mechanism.
 - (b) Complete the following reactions: $\frac{1}{2} \times 2 = 1$

(i)
$$+ Br_2 \xrightarrow{300 \, ^{\circ}C}$$
?

(c) Predict the products for the following reactions. Give suitable mechanisms:

1½×2=3

(ii)
$$CH_3$$
— $CH=CH_2 + H_2O + [O] \xrightarrow{\text{dil. alk. KMnO}_4}$?

- (d) Compare the acid strengths of ethane, ethene and ethyne.
- (e) Complete the following reaction: 1½

$$H-C=C-H+H_2O \xrightarrow{HgSO_4}$$
?

UNIT-III

(Physical Chemistry—I)

(Marks: 19)

- 9. (a) Write down the postulates of kinetic theory of gases.
 - (b) Derive the Boyle's law from kinetic gas equation.
 - (c) Define the following: $1 \times 2 = 2$
 - (i) Root-mean-square velocity
 - (ii) Compressibility factor
 - (d) Calculate the angle at which a first-order reflection will occur when a beam of X-rays of wavelength 1.54 Å is diffracted by atomic planes of a crystal, given the interplanar distance is 4.04 Å.

OR

 (a) Derive the van der Waals' equation of state

$$\left(P + a\frac{n^2}{V^2}\right)(V - nb) = nRT$$

3

(b)	Describe the deviation of a real gas from ideality with the help of a diagram.	3
(c)	Write short notes on the following:	

(c) Write short notes on the following:

 $1\frac{1}{2} \times 2 = 3$

3

2

- (i) Schottky defect
- (ii) Frenkel defect
- **11.** (a) Derive the integrated rate equation for a first-order reaction.
 - (b) Give the differences between order and molecularity of a reaction.
 - (c) Explain the following terms: $2\times2=4$
 - (i) Surface tension
 - (ii) Refractive index

OR

- 12. (a) Discuss the effect of additive (sodium chloride) on surface tension and viscosity of a liquid. 1½+1½=3
 - (b) What is the effect of catalyst on reaction rates? Explain.

(c) A first-order reaction is 40% complete in 50 minutes. Calculate the value of the rate constant. In what time will the reaction be 80% complete? 1½+1½=3
